W pracy [1] przedstawiono typowe narzędzia stosowane do połączenia organizacji pracy, które przyczyniają się również do połączenia jakości prac projektowo-biuroowych. W biurach projektowych realizowanych jest wiele różnorodnych procesów, w których mogą występować błędy, pojawiać trudne do rozwiązania problemy, braki odpowiednich kompetencji, zakłócenia w przeplataj i inforacji i. Wszystkie powyższe sytuacje mogą wpływać na jakość opracowań projektowych oraz możliwość pojawienia się w nich błędów o różnej wadze. Wcześnie wykrycie takich błędów na etapie projektowania nieznacznie tylko podnosi koszty takiego opracowania. Wykrycie błędów w produkcji wywołuje konieczność wprowadzenia większych zmian i poprawek i jest znacznie droższe, zaś wykrycie takich błędów już w eksploatacji może doprowadzić do upadłości firmy lub dużych strat związanych z usunięciem tego błędu (wstrzymanie produkcji, przeróbka projektu, wyczytywanie i naprawa wyrobów już eksploatowanych, itp.)

Aby uniknąć takich niebezpieczeństw opracowano szereg metod i narzędzi, które zastosowane w procesie projektowania pozwalają znacznie zmniejszyć prawdopodobieństwo popełnienia błędu lub też znacznie zwiększać prawdopodobieństwo jego wykrycia na etapie projektowania w trakcie kolejnych przeglądów projektu, jego weryfikacji iwalidacji.

W doskonaleniu opracowań projektowych można po- służyć się następującymi wytycznymi:

 - prawdopodobieństwo popełnienia błędu w trakcie wykonawstwa spowodowane zakładowym rozwiązaniem projektowym,
 - prawdopodobieństwo (latość) wykrycia tego błędu w procesie wykonawstwa,
 - znaczenie dla klienta popełnionego błędu.

Iloczyn tych trzech wartości nazywany liczbą priorytetową ryzyka (LPR) nie może być większy od przyjętej przez organizację dopuszczalnej wartości. Przekroczenie tej wartości zmusza projektantów do wprowadzenia zmian w projekcie, które powinny spowodować zmniejszenie LPR poniżej wartości dopuszczalnej. W przypadku nieosiągnięcia tego celu należy wprowadzić dalsze zmiany w projekcie aż do uzyskania stanu, dla którego LPR będzie mniejsza od ustalonej wartości dopuszczalnej.

3. Trzecim podejściem, które może być stosowane niezależnie od obu wcześniej przedstawionych, jest zastosowanie takich narzędzi jak:
 a) Arkusz zgłaszania problemów - QCPC

Problemy najlepiej zauważane są przez osoby, których one bezpośrednio dotyczą lub z którymi często się spotykają. W celu identyfikacji takich problemów konieczne jest odpowiednie przeszkolenie personelu, aby znał one główne cele swojej komórki i przedsiębiorstwa oraz w oparciu o nie ocenił swoje otoczenie, odpowiednio motywując pracowników, aby zrozumiało i zgłosiło zauważaną sytuację problemów oraz uła- twienie formalnego zgłoszenia. W tym celu opracowuje się specjalny formularz, powszechnie dostępny, który jest wypełniany w istocie zapadanie. W systemie zarządzania należy ustalić ważność problemu (czy należy się nim zająć), ustalić lub uściślić przyczyny powstania problemu oraz opracować plan przedsięwzięcia eliminującego wskazany problem, wdrożyć przedsięwzięcie i upewnić się o uzyskanych efektech.

Postać formularza zgłoszeniowego może być różna w zależności od profilu działalności przedsiębiorstwa. Z pomocą QCPC można identyfikować różne problemy jakościowe (wady, braki, straty) umożliwiając w ten sposób doskonalenie. W przypadku prostych problemów
umożliwia on natychmiastowe podjęcie działań korekcyjnych, a w przypadku bardziej złożonych uruchamia działania polegające na zbieraniu danych o problemie celem jego pełnej identyfikacji. QCPC jest również dobrym symulatorem zespołowego podejścia do rozwiązywania problemów w ramach zespołu lub poszukiwania na zewnątrz, jeśli znalezienie rozwiązania przekracza możliwości zespołu. Przykładowy arkusz QCPC pokazano na rys. 1.

Rys. 1. Prosty arkusz QCPC wykorzystywany do identyfikacji problemów w procesach projektowania

b) Zapobieganie błędem – Poka Yoke
Filozofia Poka Yoke wychodzi z założenia, że ludzie, maszyny mogą popełniać błędy w realizowanych procesach. W związku z tym należy:
- zidentyfikować sytuacje w jakich istnieje prawdopodobieństwo powstania błędu,
- wykorzystać możliwie proste sposoby, których zastosowanie zapobiegnie wystąpieniu tych błędów zarówno w maszynach, jak i popełnionych przez człowieka,
- doprowadzić do sytuacji, w której niemożliwym będzie popełnienie błędu (dzieki prostym przyrządám, rozwiązaniom organizacyjnym, technicznym, kontrolnym, itp.)

W ten sposób metoda ta zapobiega możliwości powstania błędu u jego źródła. Można wyróżnić dwie odmiany Poka Yoke:
- Ostrzeżenie – które wyraźnie ostrzega przed błędem wykonania, czyni błąd oczywistym lub też zatrzymuje proces w przypadku, gdy może on wygenerować błąd.
- Kontrola – zapobiega pojawieniu się błędu oraz wskazuje sytuację, która wymaga interwencji w trakcie procesu.

Realizacja zasad Poka Yoke może być wykonywana wieloma sposobami, które są wynikiem pomysłowości i kreatywności pracowników świadomośnych możliwości pojawienia się błędów oraz w zależności od rodzaju błędu. Do najczęściej spotykanych sposobów możemy zaliczyć:
- mechaniczna eliminacja możliwości popełnienia błędu (zastosowanie prostych przyrządów obróbkowych, kontrolnych, ustawczych, itp.)
- opracowanie dokumentacji technicznej zawierającej standardowe rozwiązania i wytyczne dotyczące realizowanych procesów (w dokumentacji wskazuje się konieczne działania, dzięki którym unika się błędu)
- zaprojektowanie i używanie odpowiednich kart kontrolnych, które umożliwiają nadzór lub audytowanie przebiegu procesu, co zapobiega możliwości wystąpienia błędu.

Przykład takiej karty kontrolnej przedstawiono na rys. 2.

Rys. 2. Lista kontrolna jako przykład Poka Yoke wykorzystywanego w procesach konstrukcyjnych.

c) RCCA – Działania Korygujące Przyczynę Źródłowej

Uniwersalnym narzędziem umożliwiającym wykrywanie i zapobieganie błędem, nie tylko w procesach projektowania, ale również w produkcji, zaopatrzaniu, itp., są działania korygujące przyczyny źródłowej – RCCA. Narzędzie to wykorzystuje uporządkowany proces postępowania mający na celu rozwiązanie zauważanego problemu poprzez ustalenie jego przyczyny źródłowej i sformułowanie najlepszego sposobu postępowania w celu jego eliminacji oraz zapobiegnięciu ponownego pojawienia się tego problemu. Postępowanie takie obejmuje 8 następujących kroków:
- opisz i zrozum sytuację (identyfikacja problemu oraz zbieranie wszystkich dostępnych danych dotyczących go),
- zidentyfikuj wymagane zasoby (chodzi głównie o wymaganą wiedzę i kompetencje członków zespołu zaangażowanych w rozwiązania problemu),
- zidentyfikuj i uszeregowuj prawdopodobne przyczyny źródłowe (np. za pomocą diagramu przyczynowo-skutkowego lub burzy mózgów),
- wybierz prawdopodobne przyczyny źródłowe (np. za pomocą diagramu Pareto-Lorenza),
- zidentyfikuj i uszeregowuj potencjalne rozwiązania (poszczególne rozwiązania powinny być wypracowane w warunkach danej organizacji),
- ocen i wybierz potencjalne rozwiązania (minimalny koszt lub czas realizacji, łatwość wdrożenia, skuteczność, efektywność rozwiązania),
- wdroż plan działania i monitoruj efektywność rozwiązań,
- standaryzuj podobne procesy.

RCCA stosowane jest w celu eliminacji zauważonych i pojawiających się błędów w sposób uniemożliwiający ich ponowne wystąpienie.

d) Analiza Zwrotną Rynku - MFA

Jeszcze jednym narzędziem z grupy zapobiegania błędom jest Analiza Zwrotną Rynku - MFA, dotyczy ona zarówno klientów zewnętrznych jak i wewnętrznych. Umożliwia ona lepsze zrozumienie potrzeb klientów i w oparciu o te potrzeby poprawienie jakości dostarczanych produktów i usług. Jeśli zrozumienie to nastąpi przed rozpoczęciem realizacji zlecenia to można w nim uwzględnić te potrzeby. Pozwala to uniknąć niepotrzebnych nieporozumień, reklamacji, konieczności zmian i poprawek, co wiąże się z dodatkowymi kosztami. Jeśli dobrze rozpoznana jest potrzeba klienta i w pełni je rozumie to jest gwarancją pełnej satysfakcji klienta. Istnieje wiele różnych sposobów zbierania danych od klientów, lecz najpopularniejszym jest uzyskiwanie informacji przez zwrotkę ankietu, w której klient ocenia naszą pracę, wyrób lub działania. Przykład takiej ankiety z wybranymi pytaniami przedstawiono na rys. 3.

Ankieta Satysfakcji Klienta

<table>
<thead>
<tr>
<th>Terminowość</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt/Produkt zostały dostarczone jak było zaplanowane.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jakość</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt/Produkt spełnia wszystkie wymogi formalne klienta.</td>
<td></td>
</tr>
<tr>
<td>Projekt/Produkt spełnia wszystkie wymagania techniczne klienta.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obsługa Klienta</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komunikacja z klientem była kompetentna, osoby odpowiedzialne były dostępne i przygotowane do spotkania oraz potrafili udzielić kompleksowych odpowiedzi na pytania klienta.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Budżet</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czy projekt został zrealizowany w ramach założonego budżetu?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wsparcie otrzymywane od klienta</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jak duże wsparcie klienta było wymagane aby Projekt/Produkt spełniał wszystkie wymagania? (7: < 10%, 6: 10-15%, 5: 15-20%, 4: 20-30%, 3: 30-40%, 2: 40-50%, 1: powyżej 50%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ocena ogólna</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twój ogólna ocena sposobu realizacji zlecenia Projekt/Dostarczonego Produktu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dodatkowy komentarz</th>
<th>Wynik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Informacje dodatkowe: Proszę o wypełnienie ankiet w oparciu o Państwa odczucia dotyczące dostarczanych przez nas usług/produktów. Skala waha się od 7 (celujący) do 1 (bardzo niezadowalająca)

<table>
<thead>
<tr>
<th>7- Ciepląca</th>
<th>1</th>
<th>1- Bardzo niezadowalająca</th>
</tr>
</thead>
<tbody>
<tr>
<td>6- Bardzo zadawalająca</td>
<td>5- Zadowalająca</td>
<td>4- Częściowo zadawalająca</td>
</tr>
<tr>
<td>5- Zadowalająca</td>
<td>4- Częściowo zadawalająca</td>
<td>MB: Nie dotyczy</td>
</tr>
</tbody>
</table>

Rys. 3. Przykład ankiety dotyczącej satysfakcji klienta – MFA.
W różnych systemach zarządzania podejmowanych jest wiele przedsięwzięć, aby każda praca lub działanie były wykonywane dobrze za pierwszym razem. Uzyskanie takiego stopnia doskonalości wymaga nie tylko skutecznego zapobiegania błędem, lecz również stosowania odpowiednich metod prewencyjnych, które budowałyby doskonalość stosowanych procesów. Należy podkreślić, że w zależności od wielkości organizacji i jej kompetencji mogą być stosowane bardzo różne różnorodne metody i techniki zapewnienia jakości o których istnieje obszerna literatura (np. norma ISO/TR 10014) [5]. Do częściowo stosowanych metod prewencyjnych, dzięki którym można zmniejszyć potencjalne straty, zapewnić wysoką jakość, zmniejszyć ryzyko niefalowych działań, itp., należą następujące metody:

1. Praca Standardowa – jest metodą, która definuje interakcję operatora i maszyny w trakcie realizacji procesu. Poszczególne interakcje regulowane są odpowiednimi instrukcjami lub przepisami zawierającymi sprawdzone i potwierdzone praktyki oraz najlepsze rozwiązania. Dzięki temu eliminowane są dowolności interpretacyjne, poszukiwanie właściwych rozwiązań, itp. Pozwala to na eliminację różnic w rozmiarach stanów, nadprodukcja,oczekiwanie i opóźnienia, transport, zbędne ruchy, niedoskonałe procesy, problemy jakościowe, niewystarczające kwalifikacje pracowników, itp.). Wprowadzenie do zakładowych standardów, norm i normatyw w celu dostosowania ich do aktualnych zmian zadań i potrzeb. Stosowne korzyści jakie są uzyskiwane dzięki temu, to:
 - następuje wyraźna i znaczna redukcja zapałów (nadmiernie zapasy pozwalające na 「ukrywanie」 problemów),
 - redukcja ulegających czasu produkcyjnym, dzięki czemu w充足lótaku produktywność pracowników i maszyn,
 - wzrasta zdolności produkcyjnej i małą problémy wokół 「wąskich gardel」 dzięki eliminacji przestojów z przyczyn technicznych lub organizacyjnych,
 - procesy opisywane w standardach realizowane są w sposób powtarzalny z ograniczonym stabilnym rozproszением zapewniając stabilny poziom jakości i kosztów.

2. Zarządzanie Procesem – jest uniwersalnym podejściem wymaganym przez ISO 9001 polegającym na pełnej identyfikacji procesu (nazwa, wejście, wyjście, dostawca, klient, sekwencja), realizacji jego przebiegu w celu uwidocznienia słabych miejsc (bialych plam), odpowiedniego ukształtowania nadzoru oraz organizacji zarządzania procesem (ustalenie właściciela, celu, mierników realizacji wraz z wartościami pożądany i in.). Celem zarządzania procesami jest ustalenie właściwego sposobu sterowania procesem, połączenie jego efektywności i skuteczności oraz eliminacja mammotrawstwa i braków. Zarządzanie winno wykrywać słabe punkty procesu i sprzyjać ich eliminowaniu. Czestym sposobem wykorzystywanym w zarządzaniu procesem jest porównywanie z procesem wzorcowym lub analogicznym realizowanym w innych firmach, tzw. benchmarking.

3. Certyfikacja Procesu – jest metodą stosowaną przez organizacje, które z powodzeniem stosują zarządzanie procesowe i mają pełną świadomość, że przez doskonalenie procesów następuje również doskonalenie organizacji. Certyfikacja jest możliwa wówczas, gdy potrafimy trafnie sformułować wymagania jakościowe i koszty względem procesu i ustalić pewien plan zadań realizujących organizację i klientów procesu. Głównym celem jest redukcja zmienności w procesie nawet do poziomu sześć sigma (3,4 zdarzeń niedopuszczalnych na 1 milion realizacji). W celu uzyskania tak znaczącej redukcji zmienności konieczne jest postępowanie się różnorodnymi technikami i narzędzią oraz pełne wykorzystanie możliwości jakie dają praca zespołowa. Przeważnie tak korzystne efekty uzyskuje się w wyniku 6-cio etapowego postępowania, tzn.:
 a) analiza procesu, urządzeń, danych w celu wykrycia miejsc mammotrawstwa, braku jakości, strat czasu, itp.,
 b) identyfikacja przyczyn problematycznych, zauważonych problemów oraz ewentualnie przyczyn drugorzędnących,
 c) poszukiwanie i wstępne formułowanie efektywnych działań i przedsięwzięć umożliwiających eliminację zauważonych problemów,
 d) przeprowadzenie analizy techniczno-ekonomicznej wykonalności proponowanych przedsięwzięć, wybór najbardziej racjonalnego (optymalnego) rozwiązania dla rozpatrywanej sytuacji oraz dopracowanie projektowo-organi
czacyjne wybrane rozwiązania,
 e) wdrożenie przedsięwzięcia i kontrola jego efektywności i skuteczności,
 f) standardyzacja rozwiązania (wpisanie do instrukcji, opracowań, normatyw nowego schematu działania).
Jeżeli w procesie ograniczono zmienność, wyeliminowano mammotrawstwo i zapewniono stabilność, to na podstawie audytu i oceny jego mierników może on być certyfikowany według zasad ustalonych przez organizację.

4. Jeszcze jednym narzędziem prewencyjnym jest tzw. „system paszytow”. Jest to odmiana systemu branżowego, dająca pewność, że produkty lub procesy spełniają wszystkie zakładowe cele, zmniejszając ryzyko podjęcia niefalowych działań. W procesach konstrukcyjnych najczęściej przyjmuje on formę podziale procesu na etapy kończące się konkretnymi opracowaniami, po zakończeniu których
następuje omówienie postępu prac i ich wyników wraz z klientem, co daje pewność, że spełnione są wszystkie wymagania, zarówno na danym etapie projektowania, jak również przez produkt finalny.

Stosowanie prostych technik odchudzonego zarządzania w procesach konstrukcyjnych czy też ogólnie biurowych i narzędzi z nimi związanych w znaczący sposób eliminuje marnotrawstwo i umożliwia poprawę jakości obsługi, uproszczenie procedur, skrócenie czasu potrzebnego do ich realizacji, jak również redukuje koszty ponoszone w procesie obsługi klienta. Jak widać część tych narzędzi jest wspólna z narzędziami technik odchudzonego zarządzania produkcją, część z kolei została zmodyfikowana, aby lepiej dopasować się do procesów biurowych. Ich wdrożenie nie jest skomplikowane a korzyści wynikające z ich stosowania w znaczny sposób zwiększają konkurencyjność firmy na rynku.

LITERATURA

1. Ciasnocha, J. Łunarski: Doskonalenie prac projektowo-biurowych metodami organizacyjnymi, Technologia i Automatyzacja Montażu, nr 1, 2007
4. Specyfikacja Techniczna EN/AS 9100

Mgr inż. Grzegorz Ciasnocha jest liderem projektu w sekcji konstrukcyjnej WSK „PZL – Rzeszów” S.A., (email: grzegorz.ciasnocha@wskrz.com), a prof. dr hab. inż. Jerzy Łunarski jest pracownikiem Katedry Technologii Maszyn i Organizacji Produkcji na Politechnice Rzeszowskiej oraz pracownikiem Instytutu Mechanizacji Budownictwa i Górnictwa Skafowego w Warszawie, ul. Racjonalizacji 6/8 (email: jkimiop@prz.edu.rzeszow.pl)

C. d. ze str. 31

SBORKA 5 (82), 2007

1. Porównawcza ocena kinematycznych charakterystyk mechanizmów urządzeń pomocniczych w automatycznym montażu.
2. Konstrukcyjno-technologiczna złożoność technologicznego pojęcia „prace ślusarsko-montażowe”.
3. Teoretyczne podstawy syntez i analizy struktur systemów produkcyjnych w budowie maszyn przy wyborze wieloosortymentowych urządzeń.
4. Magnetometryczny czujnik na bazie materiałów ferrotycznych z jednostronnym schematem impulsowego wzbudzenia dla zliczania informacji z magnetycznych urządzeń adresowych.
5. Uproszczone obliczenia walcowych przekładni zębatych Nowikowa. C. d.
6. Prognozowanie pojawienia kawalacji w przepływowych elementach napędów hydraulicznych.
8. Montaż i remont sieci cieplnichyśnych urządzeń cieplnych i układów sanitarno-technicznych. C. d.
9. Ogólnomaszynowe normatywy czasu na roboty ślusarskie przy remoncie urządzeń. C. d.

C. d. str. 44

SBORKA NR 6 (83), 2007

1. Zautomatyzowane projektowanie procesów technicznych montażu wyrobów w budowie przyrządów.
2. Problemy zapewnienia dokładności wyrobów produkcji pomocniczej na bazie analizy montażowych ćwiczeń wymiarowych.
3. Metoda stabilizacji trajektorii ruchu części przy automatycznym ustawianiu uszczelnień.
4. Projektowanie automatycznego klinowo-pasowego wariantora z uwzględnieniem montażu i regulacji.
5. Wpływ osiowych sił mocujących na dokładność grupowych połączeń gwintowych w wielowrzędowych wkrętarkach nowego typu.
6. Połączenie jakości połączeń spawanych w procesach montażu.
7. Model strumieniowego urządzenia sortującego.
8. Zwiększenie jakości połączeń śrubowych przez zastosowanie ultradźwięków.
10. Sposób zwiększania niezawodności eksploatacji dziedzin urządzeń siłowych.
11. Sterowanie jakością funkcjonowania informacyjnych systemów w produkcji montażowej.
12. Wpływ konstrukcyjnych elementów na stan naprężeń i odkształceń dźwięgu mostowego.
13. Zarządzanie jakością w działalności naukowej uczelni wyższej.