ELEKTRODYNAMICZNE ŁĄCZENIE RUR Z BLACHAMI

Józef BEDNARCZYK, Gerard GŁUCH

Jedną z bardziej pracochłonnymi operacjami montażo-wych jest uzyskanie trwałego połączenia metalowej rury z plaskim elementem. Jeżeli grubość elementu jest znacznie większa niż grubość ścianki rury połączenie uzyskuje się najczęściej poprzez jej rozwałkowywanie w otworze wykonanym w elemencie. Uzyskane połączenie ma wówczas charakter plastyczno-sprzężystry. Tak mocuje się na przykład miedziane rury w stalowych dnach sitowych wykorzystując do tego celu kilkuwałczkowe walarki. Inne sposoby montażu takich rur polegają na spawaniu ich lub wybuchowym rozpoczęciu w otworach sitowych den [1].

Rys. 1. Schemat montażu kształtowego.

ELEKTRODYNAMICZNY MONTAŻ RUR

Niekonwencjonalnym sposobem łączenia rur z płaskimi elementami może być montaż eklektodynamiczny, w którym wykorzystuje się siły działające na metalowe elementy umieszczone w szybkozmiennym polu magnetycznym, [2]. Napędzając obrobczym jest wówczas cewka indukcyjna zwana induktorem połączona ze sta-

W artykule przedstawiono eksperymentalne badania możliwości łączenia aluminiumowych rur i blach, metodą ektodynamiczną. Badania podjęto z myślą o zastosowaniu tej technologii w warunkach przemysłowych przy produkcji imbryka, (Rys. 2), gdzie jedną z operacji obrobnych jest kształtowy montaż wylewki 1 z czaszą 2
imbyrka, realizowany tradycyjnie w sposób opisany we wprowadzeniu.

WARUNKI EKSPERIMENTU

Rys. 3. Schemat elektrodynamycznego montażu rury: 1 - blacha, 2 - rura, 3 - induktor, 4 - matryca.

Rysunek 3 przedstawia ideowy schemat elektrodynamycznego montażu rury 2 z blachą 1 na stanowisku badowczym. Impuls prądu przepływającego przez induktor 3, wywołuje dynamicznie rozpoczęcie rury, której ścianka przemieszcza się w stronę krawędzi otworu. Wywierając się następnie kolnierz o szerokości k i formowane w określonych przypadkach wyoblenie o średnicy φ₀ zaciskają się na blaszce. Ponadto stanowisko badowcze wyposażono w matrycę 4, nadającą końcowce rury stożkowy kształt, wymagany dla wylewki w produkowanych imbyrkach. Jakość uzyskanego połączenia oceniano pod względem wytrzymałościowym, wyznaczając wartość obrotowego momentu przenoszonego przez połączenie rura-blacha.

W eksperymencie łączono rury o średnicy zewnętrznej φ₀ = 36 [mm] i grubości ścianki d = 1 [mm] z blachami, których grubości g wynosiły: 1 [mm], 1,5 [mm], 2 [mm]. Przed montażem rury umieszczano współosiowo w wykonanych w blacha otworach o średnicach φ₀ rów- nych: 36 [mm], 36,5 [mm], 37 [mm], 37,5 [mm], uzyskując różne odległości początkowe / = φ₀ - φ₁ w układzie rura-blacha, rysunek 3. Połączenia realizowano, formując kolnierz o trzech różnych szerokościach k równych około: 2 [mm] - wąski; 4 [mm] średni; 6 [mm] szeroki, uzyskiwane dzięki wstępnemu wysunięciu rozpoczętej rury na określoną długość s pod blachę. Łączone elementy były wykonane ze stopu aluminium PA38; półtwardego - f i cieplnie zmieszczoną - m, przy czym montaż: rura (R), blacha (B) wykonywano w wariantach I, II, III: I - Rₐ-Bₐ; II - Rₐ-Bₐ; III - Rₐ-Bₐ.

W badaniach korzystano z energii generatora o wartościach E równych: 2,5 [kJ], 4 [kJ], 5 [kJ].

WYNIKI BADAŃ

Montaż rur i blach realizowany dla różnych wariantów wynikających z twardości aluminium.

Na rysunku 4 przedstawiono wykresy obrazujące przyrost średnicy otworu Δφ₀ = φ₀ - φ₁, (φ₀ - średnica otworu w blasz po montażu) w blachach o różnej grubości g wywołany rozpoczęciami się w nich rurami. Eksperymenty prowadzono dla wariantu I przy różnych wartościach początkowej odległości / pomiędzy rurą i otworem. Z analizy przebiegów wynika, że w przypadku gdy E = const przyrost średnicy otworu Δφ₀ jest tym większy im mniejsza jest grubość g blachy, przy czym dla każdej z trzech grubości blach zależność Δφ₀(g) jest prawie liniowa, (Rys. 4a). Prawie liniowa jest również zależność Δφ₀(g), gdy / = const, (Rys. 4b).

Rys. 4. Przyrost średnicy Δφ₀ otworu w blasze wywołany rozpoczęcą się rurą: a) dla różnych szczelin / między rurą i blachą, b) dla różnych grubości g blach.

Wykresy zaprezentowane na rysunkach 5 + 7 pozwalają na ocenę mechanicznej wytrzymałości łącząc rura-blacha w przypadkach różnej twardości stopu aluminium, z którego wykonane są łączone elementy, (warianty I, II, III). W operacjach montażowych energia generatora wynosiła E = 6 [kJ], zaś wywijane kolnierce uzy-
skiwane w każdym połączeniu miały tę samą szerokość, (kolejnie średni).

Na wykresach zaznaczono przypadki, w których podczas montażu tworzyło się wyoblenie opisane zależnością \(\Delta \delta_4 = \Delta \delta_5 - \delta_6 \). Przedstawione graficznie zależności pozwalają na sformułowanie następujących wniosków:

1. W przypadku gdy \(d < g \), montaż rury i blachy ma charakter kształtowy, a o wytrzymałości uzyskanego połączenia decyduje obecność wyoblenia. Moment przenoszony przez połączenia wzrasta przy większych wyobleniach, uzyskiwanych w wariancie II: \(B - R_m \). (Rys. 5). W wariancie III: \(B_m - R_m \) średnica otworu w blasze zwiększająca się po wprowadzeniu rury przyrasta w tak dużym stopniu, że nie powstaje wyoblenie i nie dochodzi do połączenia, (Rys. 6).

2. W przypadku gdy \(d = g = 1 \text{[mm]} \) charakter połączenia może być kształtowy lub kształtowo-plastyczno-sprzężysty. Do połączenia rury z blachą o charakterze kształtowym dochodzi w wariancie II: \(B - R_m \), podobnie jak opisano w p. 1. W wariancie I: \(B - R \) na rurach tworzą się minimalne wyoblenia, mimo tego niektóre z uzyskanych połączeń przenoszą stosunkowo znaczne momenty, jednak nie zauważa się określonej prawdopodobieństwo w uzyskiwaniu trwałych połączeń. Dla opisywanego przypadku interesujący jest efekt montażu w wariancie III: \(B_m - R_m \), w którym pod wpływem rozpoczętego przez rury następuje znaczący przyrost średnicy otworu w blasze i nie dochodzi do uformowania się wyoblenia, następuje jednak bardzo pewne połączenie rury z blachą. Momenty przenoszone przez tak uzyskane połączenia mają wartości znacznie wyższe niż uzyskane w opisanych wcześniej eksperymentach. W przedstawionej sytuacji występuje prawdopodobnie połączenie o charakterze plastyczno-sprzężyżystym wywołane umocnieniem się materiału blachy, która w momencie odcięcia zaciska się sprzężyście na rurze. Najtrwalsze połączenia uzyskano dla określonego

przedziału wartości szczeliny i pomiędzy rurą a ścianą otworu.

Rys. 6. Przyrost średnicy \(\Delta \delta_1 \) i moment \(M_6 \) dla blach o grubości \(g = 2 \text{[mm]} \); warianty I, II.

Montaż dla różnych wartości energii generatora.

Wykresy zamieszczone na rysunku 8 przedstawiają wpływ energii \(E \) generatorka na jakość uzyskiwanych połączeń.

Rys. 7. Przyrost średnicy \(\Delta \delta_0 \) i moment \(M_6 \) dla blach \(g = 1 \text{[mm]} \); warianty I, II, III.

Rys. 8. Przyrost średnicy \(\Delta \delta_0 \) i moment \(M_6 \), dla różnych energii \(E \) generatorka; \(g = 1.5 \text{[mm]} \); wariant II.
Konkluzją wynikającą z załączonych przebiegów jest stwierdzenie, że zmniejszenie wartości energii generatora zdecydowanie poprawia walory uzyskanych połączeń. Wynika to z faktu, że energia dostarczona rurze o wartości, w tym przypadku mniejszej niż poprzednio, powoduje stosunkowo niewielki przyrost średnicy \(\Delta d_1 \) otworu w rurze, a jednocześnie wystarcza ona do wywinięcia kołnierza i uformowania stosunkowo dużego wyobrażenia. Uzyskuje się wtedy połączenie kształtowe o dużej wytrzymałości.

Montaż z różnymi szerokościami kołnierza.

Jednym z celów prowadzonych eksperymentów była również ocena wpływu na wytrzymałość połączeń rury z blachą szerokości k kołnierza, (Rys. 3). Jak wynika z wykresów przedstawionych na rysunku \(9 \) największe momenty przenoszące połączenia kształtowe ze średnim kołnierzem. Wyniki takie uzyskano dla kilku kombinacji, w których uwzględniono różne wartości: energii \(E \) generatora, grubości blach, początkowej odległości / pomiędzy rurą a blachą.

Wartości momentów przenoszonych przez złącza rura-blacha wyznaczano w specjalnie zaprojektowanym uchwycie, który został wyposażony w tensometryczny układ pomiarowy, współpracujący z kartą pomiarową i komputerem. Na rysunku 10 pokazano przykładowy przebieg czasowy momentu przenoszonego przez złącze. Pierwszy odcinek przebiegu odtwarza narastającą wartość wymuszanego momentu obciążającego połączenie, który nie powoduje przemieszczania się rury względem unieruchomionej blachy. Począwszy od punktu \(Z \), zaznaczonego na przebiegu rura zaczyna się obracać względem blachy. Odpowiadającą temu punktowi wartość momentu \(M_0 \) przenoszonego przez złącze wykorzystywano sporządzając przedstawione w artykule wykresy. Zdjęcie wybranego połączenia rura-blacha uzyskanego w badaniach zamieszczono na rysunku 11.

Rys. 9. Moment \(M_0 \) dla różnych szerokości k kołnierza.

Rys. 10. Przykładowy przebieg momentu \(M_0 \) przenoszonego przez złącze rura-blacha.

Rys. 11. Złącze rura-blacha.

PODSUMOWANIE

W artykule opisano część wstępnych badań o charakterze eksperymentalnym dotyczących możliwości elektrodynamickiego łączenia cienkościennej alumi- niowej rur z blachami, których grubości niewiele się różnią od grubości ścianek rur. Oceniano jakość uzyskanych połączeń uwzględniając: geometrię układu rura-blacha, twardość aluminium, wartość energii, kształt uzyskanych połączeń. Na podstawie uzyskanych wyników sformułowano wnioski, w których przedstawiono prawdopodobny mechanizm procesów uzyskiwania połączeń o dużej wytrzymałości. Prowadzone prace eksperymentalne będą wykorzystywane do weryfikacji wyników badań analitycznych podejmowanych przez autorów w celu pełnego opisu procesów łączenia rur z blachami o ograniczonej grubości.

LITERATURA
