TYPY ARCHITEKTURY SYSTEMÓW WYTWARZANIA

Tadeusz KOWALSKI

CEL PROJEKTOWANIA ARCHITEKTURY SYSTEMÓW WYTWARZANIA

System wytwarzania składa się z czterech podstawowych elementów:

- maszyny lub maszyn technologicznych z niezbędnym wyposażeniem narzędziowym, przyrządami i uchwytem oraz urządzeniami zabezpieczającymi,
- systemu podawania i orientowania, transportowania oraz magazynowania. Rozwiązanie techniczne tego systemu wpływa na stopień automatyzacji systemu wytwarzania,
- komputerowego systemu sterowania maszynami oraz urządzeniami podawania, orientowania, transportowania i magazynowania. Komputerowy system może zapewniać komunikowanie się z operatorem, diagnozować stan systemu wytwarzania i sterować jakością, nadzorować bezpieczeństwo pracy operatora,
- operatora i jego wyposażenia w środki techniczne komunikujące się z systemem wytwarzania oraz środki bezpieczeństwa i ochrony osobistej.

Współczesna maszyna technologiczna jak i system wytwarzania wyposażony w urządzenia pomocnicze, po-winny tworzyć komfortowo urządzone, w przemyślny sposób zagospodarowane stanowisko pracy, zajmować niewiele przestrzeni, mieć osłoniętą przestrzeń roboczą, starannie wykonane osłony i umiejętnie dobrane kształty i kolor [1]. Przy tak postawionym zagadnieniu można mówić o architekturze systemów wytwarzania jako sztuce kształtowania przestrzeni dla potrzeb ludzkich. Architektura zawiera się w formach zewnętrznych obiektu i funkcjonalnym rozplanowaniu jego wewnętrznych przestrzeni-pomieszczeń z punktu widzenia zasad technologicznych, ergonomicznych i estetycznych, z zapewnieniem bezpieczeństwa pracy. Rozwiązywane są zagadnienia kształtowania elementów systemów wytwarzania bezpośredniego otoczenia człowieka wewnątrz i zewnątrz obiektu technicznego.

Korzyści wynikające z potraktowania systemu wytwarzania jako twórcu architektonicznego to:

- szerokie i systematyczne dokumentowanie wiedzy inżynierskiej w zakresie konstrukcji mechanicznej, układów sterowania i zabezpieczeń, które mogą być wykorzystywane w przyszłych projektach,
- precyzyjniejsza identyfikacja potencjalnych obszarów przewag konkurencyjnych innych projektantów i twórców,
- zmniejszenie kosztów rozwoju produktów jakimi są systemy wytwarzania,
- humanizacja pracy i obsługi operatora oraz racjonalizacja kosztów użytkowania systemów wytwarzania. Problemem projektowania architektury systemów wytwarzania jest udział ludzi-operatorów w procesie wytwarzania ze względu na:
- zakres pracy i obsługi operatorskiej oraz wybór stopnia automatyzacji,
- wybór organizacji pracy, aby uzyskać wymaganą jakość i wydajność wytwarzania,
- warunki pracy zapewniające bezpieczeństwo pracy i wymagany komfort pracy.

TYPY ARCHITEKTURY SYSTEMÓW WYTWARZANIA

Podstawowymi elementami mechanicznymi systemów wytwarzania są: maszyny lub urządzenia technologiczne, magazyny części i zespołów wytwarzanych, narzędzi, przyrządów i wyrobów gotowych, oraz środki transportu w postaci przewoźników, linii transportowych i robokar. Maszyny i urządzenia technologiczne ze względu na układ przestrzenny można podzielić na:

1) układ poziomy typu stół-warsztat (rys. 1), zaletą jest wygoda obsługi, dobry spływ wirów i materiałów technologicznych, łatwe przystosowanie do automatycznej wymiany przedmiotów wytwarzanych. Układ ten stosuje się do wytwarzania przedmiotów obrotowych o znacznej długości, do korpusów o prostopodobnym kształcie i znacznej wysokości wymagających działań technologicznych z czterech stron, do przedmiotów wykonywanych z pręta, a także przedmiotów małych i średnich [2],

2) układ pionowy typu kolumna (rys. 2), uzyskuje się wyższe dokładności wykonania niż w układach poziomych, lecz występują ograniczenia technologiczne np. działanie technologiczne tylko z jednej strony. Układy te stosuje się do wytwarzania przedmiotów obrotowych ciężkich o dużej średnicy i niewielkiej długości, do części korpusowych o dużej powierzchni mocowania i małej wysokości [2],

3) układ poziomo-pionowy, z przestawialną pod dowolnym kątem osią wkręcana, stosuje się w celu rozwiązania zadań technologicznych,

4) układ typu robot (rys. 3). Przestrzeń robocza i kollozyna jest przestrzenią zewnętrz robota, odmiennie jak w maszynach technologicznych [3].

Rys. 2. Układ typu kolumna na przykładzie: a.) tokarki karuzelowej, b.) frezarki poziomej, c.) frezarki pionowej, d.) frezarko-wytańczarki.

Rys. 3. Układ typu robot na przykładzie maszyny manipulacyjnej.

Rys. 4. Układ magazynowo-transportowy systemu wytwarzania.

Magazyny ze względu na swoje położenie przestrzenne dzielą się na: magazyny wbudowane w system wytwarzania, magazyny związane bezpośrednio z systemami wytwarzania (przedstawiono w rozdz. 4) i magazyny centralne obsługujące więcej niż jeden system wytwarzania. Wyposażenie magazynu w moduły lokalnego transportowania i porty magazynowe łączące magazyny z układami transportowymi tworzy układy magazynowe (rys. 4). Części lub zespoły montażowe przechowywane są w gniazdach regalu, skąd za pomocą układanki podawane przez przenośniki.

Układy transportowe składają z układów przenoszących, oraz urządzeń podających i urządzeń zmieniających położenie obiektu (obrót i zmiana poziomu). Układami przenoszącymi są przenośniki podwieszone i naziemne, robote i manipulatory, oraz samojedne wózki zwane robokarami.

Projektowanie i rozplanowanie układów transportowych i magazynowych jest uzależnione od budowy i rozplanowania systemu wytwarzania.

Maszyny i urządzenia technologiczne ze względu na rodzaj pracy człowieka to (5):
1) stanowisko pracy i obsługi ręcznej z ręcznym podawaniem i transportem (rys. 5 a),
2) stanowisko pracy i obsługi zautomatyzowane z ręcznym podawaniem i transportem (rys. 5 b),
3) stanowisko pracy i obsługi zautomatyzowane z zaautomatyzowanym podawaniem i transportem (rys. 5 c).
Rys. 5. Rodzaj pracy człowieka na maszynach technologicznych: a) - praca i obsługa ręczna, b) - praca zautomatyzowana z ręcznym transportem, c) - praca i obsługa zautomatyzowana.

METODY OCENY WYBORU TYPU ARCHITEKTURY SYSTEMÓW WYTWARZANIA

Doskonalenie budowy systemów wytwarzania wiąże się z uzyskiwaniem wysokiej wydajności, elastyczności, niezawodności i bezpieczeństwa pracy. Uzyskuje to przez odpowiednią konstrukcję i rozmieszczenie: maszyn i urządzeń technologicznych, układów transportowych i manipulacyjnych oraz układów magazynowych. System wytwarzania budowany jest ze względu na następujące grupy parametrów [6, 7]:

- parametry technologiczne; rodzaj procesu technologicznego części maszyn i procesu montażu oraz kinematyka procesu,
- parametry organizacyjne; stopień koncentracji systemu, elastyczność i przestawialność (przekształcalność) systemu,
- stopień automatyzacji; automatyzacja sterowania czynnością głównych i kontrolnych, automatyzacja czynności pomocniczych, magazynowych i transportowych,
- ergonomicę; dopasowanie systemu do człowieka w wytwarzaniu ręcznym, zautomatyzowanym i hybrydowym,
- bezpieczeństwo pracy; analiza zagrożeń i eliminowanie zagrożeń na etapie projektowania oraz zmniejszanie zagrożeń resztkowych,
- estetykę (wzornictwo przemysłowe - techniczne); bryła i kolorystyka systemu wytwarzania oraz wydzielanie przestrzeni czynności technologicznych i eksploatacyjnych oraz przestrzeni przebywania człowieka.

Przyjmuje się, że maszyny lub systemy stanowią pewną klasę zadań projektowych, a odpowiednie metody specjalistyczne opisane są w podręcznikach i są uporządkowa-
sowe obrabiarek, tłumienie dynamicznych oddziaływań mechanicznych,
- wymagania ergonomiczne, opisujące dopasowanie obiektu do fizycznych i psychicznych możliwości i potrzeb człowieka,
- wymagania estetyczne dotyczą całego obiektu jak i wyglądu wnętrz np. układow elektronicznych czy napędowych. Celem jest zwiększenie atrakcyjności handlowej, poprawa psychicznego komfortu pracy oraz wzmuszanie staranniejzej obsługi,
- wymagania bezpieczeństwa pracy, wynikające z dyrektyw, norm i przepisów,
- wymagania ekologiczne, charakteryzują i ograniczają niekorzystne oddziaływanie obiektu na otoczenie naturalne podczas jego wytwarzania, użytkowania, remontów, transportu i likwidacji,
- wymagania technologiczne, opisują łatwość wykonania obiektu np. dostępność materiałów, wymagane dokładności wykonania oraz możliwości transportu,
- wymagania ekonomiczne, określają główne wskazniki kosztów oraz planowaną skalę produkcji, określają sposób budowy obiektu np. kompletne i drogi czy rozbudowywany na miarę potrzeb,
- wymagania prawne, wynikające z obowiązujących na danym obszarze przepisów norm i ustaw państwowych w tym obowiązujące patenty,
- wymagania kulturowe wynikające z uwarunkowań obyczajowych i religijnych np. sposób działania prawoskrętny, kształt obiektu, ornamentyka czy kolorystyka.


LITERATURA
3. Olszewski M. i inni: Manipulatory i roboty przemysłowe. WNT. Warszawa 1984
8. Lisowski B.: O procesie pracy w projektowaniu architektonicznym. Sprawozdanie z posiedzeń komisji PAN Kraków 1986

Dr inż. Tadeusz Kowalski jest pracownikiem Instytutu Technologii Maszyn Politechniki Warszawskiej, ul. Narbutta 86, 02-524 Warszawa, tel. (022) 849 03 73, e-mail: t.kowalski@cim.pw.edu.pl

---

c. d. ze str. 14

3. System programowania na bazie wiedzy.

Przy frezowaniu złożonych powierzchni wykorzystuje się intuicyjnie opracowane na bazie wiedzy dane wejściowe oraz przewidziano cykle obróbki ograniczonych plaskich stref przy minimalnym nakładzie czasu. Moduł Strategy Menagera pozwala programiscie wyznaczyć technologiczną strategię przy obróbce złożonych części poprzez wykorzystanie środków analizy logicznej i metody blokowej - schematycznego przedstawiania danych.


c. d. str. 54