AUTOMATYZACJA DWUSTRONNEGO, PODwójNEGO FAZOWANIA RUREK

Krzysztof GALIŃSKI, Jerzy ŁUNARSKI

Różnorodne odmiany tulejek i rurek cienkościennych i grubościennych, wykonywanych z różnych materiałów spotyka się w różnych dziedzinach wytwarzania, przy czym często produkowane są one w znacznych ilościach, co uzasadnia automatyzację tego procesu w specjalnych zastosowaniach (cięcie na wymiar, odwijanie lub zawijanie kołnierzy, frezowanie czołów, fazowanie krawędzi itp.). Mimo prostych kształtów takich elementów, procesy automatyzowania wybranych operacji realizowane są przede wszystkim za pomocą urządzeń specjalnych, których charakterystyka techniczna, wydajność i elastyczność dostosowane są do konkretnych warunków produkcyjnych.

Przykładem takiego specjalizowanego urządzenia był półautomat do fazowania tulejek przedstawiony w pracy [1], którego zadaniem było wykonywanie obustronnych faz wewnętrznych w rurkach Ø 12 - 21 i długościach 108 - 240 mm co realizowano w ten sposób, że bazową i zamocowaną rurkę przemieszczano najpierw w stronę jednego wierzchołka narzędzia fazującego a następnie w kierunku przeciwnym do drugiego podobnego wierzchołka, tzn. fazowanie obu stron wykonywane było kolejno po sobie.

W celu zwiększenia wydajności procesu fazowania rurek grubościennych w OBR TEKOMA opracowano automatyzowane urządzenie do obustronnego fazowania rurek, przy czym na urządzeniu wykonywane są fazy zewnętrzne i wewnętrzne.

W celu spełnienia wymagań produkcyjnych urządzenie powinno charakteryzować się następującymi cechami:
- umożliwiać fazowanie średnic wewnętrznych rurek w zakresie od Ø 10 mm do Ø 34 mm i w zależności od grubości tych rurek również średnic wewnętrznych,
- umożliwiać wykonywanie fazowania na rurkach o długościach od 50 mm do 288 mm,
- zapewniać minimalną wydajność obustronnego fazowania zewnętrznego i wewnętrznego rurek na poziomie 20 sztuk na minutę,
- zapewnić łatwą przebieralność urządzenia przy zmianie asortymentu fazowanych rurek,
- umożliwiać proces w cyklu automatycznym, programowalnym lub w cyklu obsługi ręcznej,
- urządzenie winno umożliwiać również fazowanie zewnętrznych krawędzi prełuków.

Projekt urządzenia został dostosowany do wykonywania czynności fazowania na rurkach i prełukach aluminiowych, miedzianych i stopach tych metali.

Schemat opracowanego urządzenia przedstawiono na rys. 1.

Rys. 1. Schemat konstrukcyjny urządzenia do fazowania rurek: 1 - pojemnik na rurki do fazowania, 2 - nastawna pletwa dla rurek o różnych długościach, 3, 8 - elektro-pneumatyczna jednostka napędowa z dwuwarzecionową głowicą (do fazowania wewnętrznego i zewnętrznego), 4 - siłownik pneumatyczny mechanizmu pojedynczego wydawania, 5 - konstrukcja nośna, 6 - siłownik napędowy „rusztu” poziomego (uch posuwisto zmotoryzowany), 7 - strefa sterowania z pulpitem sterowania, 9 - układ mostowy konstrukcji nośnej, 10 - imadło zacziskowe związane z układem mostowym, 11 - „ruszt” transportowy z wyciągaciami do bazowania i mocowania tulejek.

Do ważniejszych zespołów urządzenia należą:
- magazyn elementów przeznaczonych do obróbki z mechanizmem pojedynczego wydawania (rys. 2).

Rys. 2. Schemat pojemnika z mechanizmem pojedynczego wydawania: 1 - pojemnik, 2 - nastawna pletwa, 3 - popychacz grzbieniowy, 4 - siłownik pneumatyczny popychacza, 5 - siłownik mechanizmu pojedynczego wydawania.
W pojemniku 1 można umieścić od 110 sztuk rurek o średnicy Ø 34 mm do 250 sztuk rurek o średnicy Ø 10 mm.

W zależności od ich długości odpowiednio przesuwa się i mocuje pletwę nastawną 2. Aby przeciwdziałać efekciom tzw. „mostkowania” elementów w pojemniku zastosowano specjalny popychacz grzebienny 3, który napędzany jest silownikiem pneumatycznym 4. Przed uruchomieniem mechanizmu pojedynczego wydawania 5 popychacz 3 dwukrotnie porusza stosem elementów przeznaczonych do fazowania zapewniając tym ich właściwe położenie względem mechanizmu pojedynczego wydawania. W następnej kolejności uruchamiany jest mechanizm pojedynczego wydawania, który za pomocą specjalnego czopu mocowanego na tłoczysku silownika 5 przesuwa tulejkę z pojemnika na ruszt transportowy do zetknięcia z nastawnym zderzakiem oporowym, ustalającym osieowe położenie fazowanej tulei.

Następnym ważnym zespołem urządzenia jest mechanizm do poziomego przemieszczania tulejek ze strefy dostawy do strefy obróbki (rys. 3).


Ruszt transportowy 2 wykonuje okresowe ruchy posuwisto zwrotne. Zbudowany jest z pasm blaszy ze specjalnymi równoległymi wycięciami, stanowiącymi gniazdo transportowe. Obecność tulei w gnieździe transportowym sygnalizowana jest czujnikiem optycznym, w przypadku braku tulei ponownie włącza się popychacz grzebienny i mechanizm pojedynczego wydawania. Jeśli po trzykrotnym powtóceniu tego cyklu nadal będzie brak tulei w gnieździe transportowym wówczas urządzenie zostaje zatrzymane a sygnał alarmowy wskazuje na konieczność interwencji operatora.

Natomiast jeśli tuleja zostanie w sposób prawidłowy podana na ruszt poziomy i czujnik optyczny potwierdzi jej obecność, wówczas ruszt poziomy wykonuje ruch wstecz a znajdujący się na nim element (tuleja) zostaje zepchnięty przez stałą pletwę i umieszczony w pierwszym gnieździe transportowym ruszu pionowego, po czym wykonuje on ruch do góry umieszczając tuleję w stałych, robczych gniazdach bazowych, w których zostaje zaciśnięty i unieruchomiony przez ruchome szczęki dociskowe imadła mocującego. W tym samym czasie w środkowym gnieździe transportowym ruszu pionowego następuje przepchnięcie elementu obrabianego ze strefy działania pierwszej jednostki skrawającej do strefy działania drugiej jednostki, realizowane przez silownik pneumatyczny przy pomocy czopa zamocowanego na jego tłoczysku.

Istotnym elementem urządzenia są cztery samocentrujące imadła (rys. 4).


W imadłach tych mocowane są obrabiane tuleje, ich położenie osiowe jest ustalone zderzakiem czółowym. Proces frezowania realizowany jest za pomocą dwóch elektro-pneumatycznych jednostek obrábekowych, z których każda wyposażona jest w dwuwrzecionowe głowice przeznaczone do wykonywania faz. Schemat takiej jednostki pokazano na rys. 5.

Rys. 5. Schemat elektro-pneumatycznej jednostki obrábkowej z dwuwrzecionowymi głowicami: 1 – elektro-pneumatyczna jednostka, 2 – dwuwrzecionowa głowica.
Odlęgłość międzyosiowa między wrzecionami glowicy jest analogiczna jak odlęgłość między osiami dwóch frezowanych tulejek, dzięki czemu, gdy jedno wrzeciono obrabia fazę wewnętrzną pierwszej tulei to jednocześnie drugie wrzeciono obrabia fazę zewnętrzną tulei, na której wcześniej wykonano fazę wewnętrzną i tuleja ta została przemieszczona do strefy drugiego wrzeciona.

Usytuowanie elementów uczestniczących w tych zabiegach pokazano na rys. 6.

![Diagram](attachment:image.png)

Rys. 6. Schemat konstrukcyjny usytuowania elementów strefy roboczej urządzenia: 1 - most, 2 - imadło, 3 - zderzak bazowania osiowego, 4 - siłowniki dopływające, 5 - konstrukcja nośna, 6 - rynna odprowadzająca obrabiane tuleje.

Jak widać z rys. 6 nad ruchomym rusztem transportowym posadowiona jest część konstrukcji nośnej w postaci mostu 1, na którym umocowane są imadła 2, robocze gniazda bazowe oraz siłowniki dopływające 4, których zadaniem jest dokładne usytuowanie elementu obrabianego w roboczym gnieździe bazowym przed zamknięciem szczęk imadlej. Na końcu rusztu transportowego umocowanego do konstrukcji nośnej 5, znajduje się rynna 6 odprowadzająca elementy obrabiane do odpowiedniej palety transportowej.

Oprócz tych układów urządzenie posiada standardowy układ przygotowania powietrza, mikroprocesorowy układ sterowania elektrycznego i elektronicznego, pulpitu sterującego z przyciskami: start, zatrzymanie, awaria, stop awaryjny i in.

Ze względu na różne długości obrabianych elementów, tuleja w której wykonano z jednej strony kolejno obie fazy (wewnętrzną i zewnętrzną) szczęki dociskowe zostają poluzowane, a tuleja przesunięta na środkowe gniazdo transportowe ruchu pionowego i przepchnięta siłownikiem pneumatycznym do strefy działania przeciwległej jednostki skrawającej do zetknięcia z płynącym zderzakiem bazowym, po czym szczęki zostają ponownie zaczniete. W dalszej kolejności jednostka skrawająca wykonuje ruch posuwowy, podobnie jak wcześniej przeciwległa, wykonywane są kolejno zabiegi frezowania i zostaje zakończony cykl fazyzenia drugiej strony tulei. Po zakończeniu tych zabiegów docisk popychaacy i szczęk dociskowych zostaje zwolniony, gniazda rusztu pionowego przesunięte w dalsze położenie a obrabiona tuleja wypada poprzez rynnę odprowadzającą do palety transportowej. Od tego momentu cykl pracy urządzenia powtarza się.

Przy przejściu z obróbki jednego typu tulei na inny konieczne czynności przetworzeniowe ograniczają się do następujących:
- przesuniecie pletwy nastawczej w pojemniku półwyrobów na wymiar długościowy obrabianych tulei,
- jeśli to konieczne, to wymiana frezów frezujących (gdy różnice średnic kolejnych partii są nie wielkie to wymiana nie jest konieczna),
- przeprogramowanie długości ruchów przepychania tulei od strefy roboczej jednej jednostki do strefy drugiej jednostki obróbkowej.

Na urządzeniu można również wykonywać inne zabiegi np. frezowanie czoł i naklejkowanie walków bezstopniowych (dokładność wymiaru długościowego może być mniejsza jak przy jednoczesnym frezowaniu), wiercenie i rozwircanie lub pogłębianie otworów w czołach gladkich walków, wiercenie otworu i wytaczanie rowka pierścieniowego na powierzchni czołowej itp.


c. d. ze str. 27

Simulation modelling in virtual manufacturing analysis for integrated product and process design.

Model symulacyjny w wirtualnej analizie wytwarzania elementów zintegrowanych i projektowaniu procesów – s. 69

W artykule przedstawiono prace wdrożeniowo - rozwojowe nad modelem symulacji graficznej. W pracy podkreślono całocięściowe podejście do wyrobu i procesu projektowania, w którym źródło danych o wyrobach jest współużytkowane i wykorzystywane do analizy w środowisku wirtualnym dla realizacji różnych przedsięwzięć produkcyjnych włącznie z ulepszaniem wyrobów, planowaniem produkcji, analizą montażu, organizacją pracy dla projektowania stanowisk, symulacji operacji oraz rozplanowania zakładu produkcyjnego. Opisano zastosowaną metodę i przeprowadzono dyskusję podając argumenty za i przeciw stosowaniu oprogramowania e-produkcyjnego w celach rozwojowych.

c. d. str. 33