OCENY I PROGNOZOWANIE JAKOŚCI MASZYN

J.M. RADKIEWICZ, J.J. KOMAROW, W.A. TIMIRIAZEW, M.S. OSTROWSKIJ

Jakość maszyn, w tym również przenosników taśmowych i innych maszyn górniczych, charakteryzowana jest konstrukcyjnymi i technologicznymi parametrami kształtowanymi w procesie wykonania. Zwiększenie jakości na współczesnym etapie rozwoju, może być zapewnione za pośrednictwem realizacji kompleksu przedsięwzięć dotyczących doskonalenia metod i środków produkcji. Dla zapewnienia wymaganej jakości należy powiązać w jedną całość wszystkie ognia procesu produkcyjnego w ramach przedsiębiorstwa. Ważnym warunkiem normalnego funkcjonowania takiego systemu jest jednolitość wykorzystywanych metod oceny jakości na różnych etapach oraz ich obiektowność.

Jak wiadomo, jakość produkcji określana jest zbiorem właściwości determinujących jej przydatność do spełniania określonych wymagań zgodnie z przeznaczeniem. Rzecz oczywista, że dla odzielnych typów maszyn, zespół właściwości określających ich jakość może być różny. Asortyment wskaźników jakości podawany jest w normach 4-jej grupy (GOST 4. XXX-X).

Wybór konkretnego asortymentu wskaźników, zależy od celu oceny – określenia najlepszego wariantu produkcji; obliczenia parametrów perspektywicznych maszyn; planowania zwiększenia poziomu jakości wyrobu itp. Całego zestawu właściwości przenosnika praktycznie nie można uwzględniać, dlatego nie można w pełni ocenić jego jakości. Taka ocena zawsze jest względna i zależy od wybranego asortymentu wskaźników.

Nasze badania wykazały, że należy przestrzegać dwóch zasad: ilość wskaźników jakości powinna być minimalną lecz wystarczającą dla uzyskania postawionego celu; w asortymentie wskaźników nie powinny znajdować się wskaźniki zależne jedynie od drugiego, ponieważ nie wnoszą one dodatkowych informacji i mogą być wyrażone jeden za pośrednictwem drugiego: we wszystkich wybranych wskaźnikach powinna być przewidziana możliwość uzyskania ich liczbowych wartości, w tym również dla zagranicznych wyrobów; przy prognozowaniu poziomu jakości liczba wskaźników powinna być wystarczająca dla zapewnienia opracowania wyrobu o zadanym poziomie jakości przy wykorzystaniu istniejących metod projektowania; wskaźniki jakości należy oceniać za pomocą obiektywnych metod.

W chwili obecnej ocena poziomu jakości nowego opracowania przeprowadzana jest w wyniku porównania jego podstawowych parametrów z takimi samymi parametrami urządzeń analogicznych. Subiektywny wybór takiego analogu nie może gwarantować obiektywnej oceny, nawet w tym przypadku, gdy on przedstawia sobą jednojęzyczną konstrukcję z ocenianą maszyną i w danym okresie jest ostatnim osiągnięciem techniki. Jest to związane z tym, że okres opracowania nowej maszyny górniczej jest dość długi (7-10 lat, a dla niektórych maszyn i więcej). Takie czasowe przesunięcie między początkiem opracowania wyrobu i wdrożeniem go do produkcji często prowadzi do moralnego starzenia. Dla zapewnienia wyprzedażowego rozwiązania naszej krajowej techniki i jej konkurencyjności na światowych rynkach należy kierować się odpowiednimi prognozami. Podstawowa trudność wykorzystania istniejących metod prognozowania polega na braku wystarczająco długich scenariuszy rozwojowych tego lub innego rodzaju techniki. Jednocześnie duża ilość modyfikacji maszyn przeznaczonych dla wykonania jednej i tej samej funkcji jest wystarczająco duża, co przy warunkach opracowania kryteriów zapewniających porównywalność między sobą takich typów i typowymiarów maszyn stworzyło by możliwość wykorzystania metody prognozowania.

W rezultacie wykonanych badań zaproponowano metodę bezekspertową oceny jakości, która może być wykorzystana dla rozwiązania zadań związanych z prognozowaniem. Jako podstawę metody przyjęto zasadę porównywań wartości zużywanych zasobów na osiągnięcie jednostki ostatecznego wyniku funkcjonowania maszyny (OWFM). Dla określenia OWFM zaproponowano zależność, której struktura może być wspólna dla dowolnych maszyn:

\[\lambda_i = V_i(c_i, u)u; \] \hspace{1cm} (1)

gdzie: \(V_i(c_i, u)u \) - wydajność i-tej maszyny jako funkcja jej konstrukcyjnych i roboczych parametrów \(c_i \) i parametru \(u \), najpełniej charakteryzującego warunki eksploatacji. Parametry u posiadają wymiarowość [jednostka energii (jednostki produkcji)]; \(V_i \) - [jednostka produkcji (jednostki czasu)], i jako wynik: OWFM [jednostka energii (jednostki czasu)].

Zużywane zasoby (wskaźniki jakości \(P_i \)) w ogólnym przypadku można rozdzielić na dwie grupy: zwiększające i zmniejszające. Do zwiększających należą wskaźniki, że zmniejszeniem których jakość maszyn przy pozostałych równych warunkach ulega zwiększeniu; do zmniejszających należą wskaźniki, za zmniejszeniem których jakość maszyn, przy innych porównywalnych warunkach, ulega zmniejszeniu.

Jednostkowe wartości wskaźników jakości \(q_{ij} \) charakteryzują wielkość zużywanych zasobów, przypadających na jednostkę OWFM \(\lambda_i \) i określone są według zależności:

\[q_{ij} = \frac{P_i}{\lambda_i}; \] \hspace{1cm} (2)

gdzie: \(\lambda_i \) - ostateczny wynik funkcjonowania i-tej maszyny, \(q_{ij} \) - porządkowy numer maszyny w zestawie maszyn podlegających ocenie \((i = 1, 2, ..., n) \); \(j \) - porządkowy numer wskaźnika jakości \((j = 1, 2, ..., m) \).
Jako bazową wartość dla j-tego zwiększającego wskaźnika przyjmuje się minimalną wartość jednostkowej wielkości, tzn.:

\[q_{bj} = \min_{1 \leq j \leq n} q_{ij} \quad (3) \]

Dla j-tego zmniejszającego wskaźnika bazowa wartość określana jest według zależności:

\[q_{bj} = \max_{1 \leq j \leq n} q_{ij} \quad (4) \]

Pozioomy jakości według jednostkowych wskaźników określone są według wzorów:

- dla zwiększających wskaźników:
 \[k_{ij} = \frac{q_{bj}}{q_{ij}} \leq 1 \quad (5) \]

- dla zmniejszających wskaźników:
 \[k_{ij} = \frac{q_{ij}}{q_{bj}} \leq 1 \quad (6) \]

Pozioom jakości według kompleksowego wskaźnika określa się według wzoru [1,2]:

\[K_j = \sqrt{\frac{m \sum_{j=1}^{m} k_{ij} \left(\sum_{j=1}^{m} k_{ij} - k_{ij} \right)}{(m-1) \sum_{j=1}^{m} k_{ij}}} \quad (7) \]

Jak wskazują badania funkcji K = f(kj) na odciętiku [0 \leq k_{ij} \leq 1] wyraża to zależność typowe dla większości procesów rozwojowych: zahamowanie początkowego rozwoju, intensywny wzrost, i na koniec nascenie do poziołu określającego granicę zwiększenia poziomu jakości maszyni przez zwiększenia (zmniejszenia) w-tego oddzielnego jednostkowego wskaźnika.

W wyniku modelowania na maszynie cyfrowej EMC, wykazano że średnie kwadratowe odchylenie poziomu jakości według kompleksowego wskaźnika Sk zmniejsza się ze zwiększeniem liczby wskaźników przyjętych dla oceny:

\[S_K = 0.4186 \, m^{0.705} \] \quad (8)

jeśli poziomy jakości według jednostkowych wskaźników rozkładają się według równomiernego prawa \((k_j = 0.5, S_{kj} = 0.2886)\), oraz:

\[S_K = 0.2366 \, m^{0.705} \] \quad (9)

jeśli poziomy jakości według jednostkowych wskaźników rozkładają się według prawa normalnego:

\[K_j = 0.5, S_{kj} = 0.1667 \]

S stosunki średnie kwadratowe odchylenia poziomu jakości według j-tego jednostkowego wskaźnika jakości do średniej kwadratowej wartości poziomu jakości według kompleksowego wskaźnika praktycznie nie zależą od prawa rozkładu poziomów jakości według jednostkowych wskaźników i obniża się ze zwiększeniem ilości wskaźników \(m \), przyjętych dla oceny: \(l = \frac{S_{lj}}{S_K} = 1.45 \, m^{-0.705} \) dla równomiernego rozkładu i \(l = \frac{S_{lj}}{S_K} = 1.42 \, m^{-0.705} \) dla normalnego rozkładu.

Taka wstępna obróbka informacji o jakości maszyn o identycznym funkcjonalnym przeznaczeniu pozwala wykorzystać dla prognozowania poziomu jakości metody matematycznych modeli, których konstanty wyznaczane są za pomocą makroanalizy regresyjnej.

Proces zmiany poziomu jakości według kompleksowego wskaźnika w ogólnym przypadku można opisać następującymi równaniami różniczkowymi:

\[\frac{dK}{dt} = \varphi(t) \quad (10) \]

\[1 \frac{dK}{dt} = f(t) \quad (11) \]

Równanie (10) charakteryzuje prędkość, a równanie (11) względną prędkość zmiany poziomu jakości według kompleksowego wskaźnika w funkcji czasu. Konkretną postać funkcji \(\varphi(t) \) i \(f(t) \) określa się na podstawie analizy dynamiki jakości.

Dla oceny poziomu jakości i parametrów modeli, przedstawiających zmianę poziomu jakości, opracowano specjalne programy w języku Visual Basic. Programy przewidują obliczenie wszystkich koniecznych statystycznych kryteriów dla wyboru najbardziej odpowiadającego modelu.

Okręs wyprzedzenia \(t_y \) przy prognozowaniu powinien być nie mniejszy niż odpowiednich okresem tworzenia maszyny \(t_m \), okresem seryjnej produkcji \(t_n \) i okresem eksploatacji ostatnio wyprodukowanej maszyny \(t_{en} \), tj.:

\[t_y = t_m + t_n + t_{en} \quad (12) \]

Analiza wskazuje, że wartości \(t_y \) dla przenosników osiągają okres 15-20 lat.

Propagonowana metoda oceny jakości pozwala określić graniczne wartości wskaźników perspektywicznych maszyn, tzn. maszyn, których poziom jakości będzie nie mniejszy od wymaganego w zadanej przedziale czasowym (okres wyprzedzenia). W tym celu należy określić zależność zmian poziomu jakości według kompleksowego wskaźnika od poziomu jakości według jednostkowych...
wskaźników. Badania wykazały, że ta zależność w przedziale \([0 \leq k \leq 3]\) może być przedstawiana w postaci modelu liniowego:

\[
K_j = a_{0j} + a_{1j} k_j
\]

lub

\[
k_j = \frac{h_{0j} + h_{1j} K_i}{h_{0j} + h_{1j} K_{np}}
\]

gdzie: \(a_{0j}, a_{1j}, b_{0j}, b_{1j}\) - konstanty, określone za pomocą analizy regresyjnej.

Dla przenosników taśmowych tendencja zmiany poziomu jakości według kompleksowego wskaźnika

\[
K_{np} = \varphi(t_j)
\]

z wystarczającą dla praktycznych potrzeb dokładnością obliczeń, może być przedstawiona w postaci:

- liniowego modelu

\[
K_{np} = c_0 + c_1 (t_i - t_0)
\]

- lub eksponencjalnego modelu

\[
K_{np} = \exp[c_0 + c_1 (t_i - t_0)]
\]

gdzie: \(t_i\) - rok opracowania przenosnika, \(t_0\) - względny początek odliczania czasu.

Z uwzględnieniem powyższego, graniczne wartości zwiększających wskaźników perspektywicznych przenosników można określić według zależności:

\[
P_j \leq \lambda \frac{q_{hi}}{k_j}
\]

Uwzględniając wzory (13) – (16) otrzymamy:

\[
P_j \leq \frac{\lambda q_{hi}}{h_{0j} + h_{1j} K_{np}}
\]

dla zmniejszających wskaźników wzór przyjmuje postać:

\[
P_j \leq \lambda q_{0i} (h_{0j} + h_{1j} K_{np})
\]

W tablicy 1 przytoczono wyniki wykorzystania zaproponowanej metody dla oceny i prognozowania jakości realnych maszyn (63 modele) według sześciu wskaźników. Wszystkie wskaźniki są zwiększające.

Jednostkowe wartości wskaźników, obliczone według wzoru (2), przedstawiono w tablicy 2. Podkreślono jednostkowe wartości wskaźników jakości, przyjętych za bazowe. Zespół bazowych wskaźników \((q_{0i})\) jest analogiem, względem którego przeprowadza się dalszą ocenę:

\[
[q_{0i}] = [8.706 \cdot 10^{-4}, 1.29 \cdot 10^{-4}, 2.8 \cdot 10^{-3}, 0.0393, 0.0302, 0.248]
\]

Poziomy jakości według jednostkowych wskaźników i kompleksowego wskaźnika przedstawiono w tablicy 3.

Tablica 1. Dane początkowe dla oceny jakości maszyn

<table>
<thead>
<tr>
<th>Nr p/p</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>λi</th>
<th>t-1950</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,142</td>
<td>0,252</td>
<td>3,60</td>
<td>35</td>
<td>50</td>
<td>2229</td>
<td>2268,0</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>8,567</td>
<td>0,955</td>
<td>16,40</td>
<td>288</td>
<td>250</td>
<td>3240</td>
<td>5363,7</td>
<td>28</td>
</tr>
<tr>
<td>54</td>
<td>8,308</td>
<td>0,905</td>
<td>16,70</td>
<td>264</td>
<td>250</td>
<td>1145</td>
<td>4612,6</td>
<td>28</td>
</tr>
<tr>
<td>59</td>
<td>9,524</td>
<td>1,713</td>
<td>30,67</td>
<td>430</td>
<td>350</td>
<td>8386</td>
<td>10939,2</td>
<td>33</td>
</tr>
<tr>
<td>61</td>
<td>4,000</td>
<td>0,416</td>
<td>10,63</td>
<td>214</td>
<td>250</td>
<td>11514</td>
<td>3225,4</td>
<td>34</td>
</tr>
<tr>
<td>63</td>
<td>6,226</td>
<td>1,199</td>
<td>11,30</td>
<td>224</td>
<td>210</td>
<td>6352</td>
<td>3483,6</td>
<td>36</td>
</tr>
</tbody>
</table>

Tablica 2. Jednostkowe wartości wskaźników jakości

<table>
<thead>
<tr>
<th>Nr p/p</th>
<th>q1*10^{-4}</th>
<th>q2*10^{-4}</th>
<th>q3*10^{-4}</th>
<th>q4</th>
<th>q5</th>
<th>q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99,440</td>
<td>11,110</td>
<td>15,87</td>
<td>0,1540</td>
<td>0,2200</td>
<td>9,828</td>
</tr>
<tr>
<td>53</td>
<td>15,970</td>
<td>1,780</td>
<td>3,06</td>
<td>0,0540</td>
<td>0,0470</td>
<td>0,604</td>
</tr>
<tr>
<td>54</td>
<td>18,010</td>
<td>1,960</td>
<td>3,62</td>
<td>0,0570</td>
<td>0,0540</td>
<td>0,248</td>
</tr>
<tr>
<td>59</td>
<td>8,706</td>
<td>1,566</td>
<td>2,80</td>
<td>0,0393</td>
<td>0,0302</td>
<td>0,767</td>
</tr>
<tr>
<td>61</td>
<td>12,400</td>
<td>1,290</td>
<td>3,50</td>
<td>0,0630</td>
<td>0,0780</td>
<td>3,570</td>
</tr>
<tr>
<td>63</td>
<td>17,870</td>
<td>3,440</td>
<td>3,24</td>
<td>0,0640</td>
<td>0,0600</td>
<td>1,823</td>
</tr>
</tbody>
</table>

Tablica 3. Poziomy jakości porównywanych maszyn

<table>
<thead>
<tr>
<th>Nr p/p</th>
<th>k1</th>
<th>k2</th>
<th>k3</th>
<th>k4</th>
<th>k5</th>
<th>k6</th>
<th>k7</th>
<th>k8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,092</td>
<td>0,116</td>
<td>0,176</td>
<td>0,255</td>
<td>0,145</td>
<td>0,025</td>
<td>0,124</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0,545</td>
<td>0,725</td>
<td>0,915</td>
<td>0,728</td>
<td>0,681</td>
<td>0,411</td>
<td>0,620</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0,483</td>
<td>0,658</td>
<td>0,773</td>
<td>0,689</td>
<td>0,593</td>
<td>1,000</td>
<td>0,643</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1,000</td>
<td>0,824</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>0,323</td>
<td>0,894</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0,702</td>
<td>1,000</td>
<td>0,800</td>
<td>0,569</td>
<td>0,410</td>
<td>0,069</td>
<td>0,569</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0,487</td>
<td>0,375</td>
<td>0,864</td>
<td>0,614</td>
<td>0,533</td>
<td>0,136</td>
<td>0,467</td>
<td></td>
</tr>
</tbody>
</table>
Tendencje zmian poziomu jakości według kompleksowego wskaźnika rozpatrywanych maszyn posiadają postać:

$$K_{\text{wp}} = \exp[-1.81 + 0.0225(t - 1950)]$$ \hspace{1cm} (20a)

W wyniku statystycznej analizy otrzymano parametry modelu (14) (tablica 4).

Z uwzględnieniem przytoczonych danych pojawia się możliwość określenia granicznych wartości wskaźników jakości perspektywicznych maszyn z uwzględnieniem faktycznych wartości OWFM (λ_{wp}):

$$P_1 \leq \frac{8.71 \times 10^{-4} \lambda_{wp}}{-0.0707 + 1.13 \exp[-1.81 + 0.0225(t - 1950)]}$$

$$P_2 \leq \frac{1.29 \times 10^{-4} \lambda_{wp}}{-0.0546 + 1.194 \exp[-1.81 + 0.0225(t - 1950)]}$$

itd. \hspace{1cm} (20b)

Tablica 4. Parametry modelu (14)

<table>
<thead>
<tr>
<th>Numer wskaźnika ($j=1,2,...,6$)</th>
<th>b_0</th>
<th>b_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0707</td>
<td>1.1300</td>
</tr>
<tr>
<td>2</td>
<td>-0.0546</td>
<td>1.1940</td>
</tr>
<tr>
<td>3</td>
<td>0.0377</td>
<td>1.3073</td>
</tr>
<tr>
<td>4</td>
<td>0.1999</td>
<td>0.8574</td>
</tr>
<tr>
<td>5</td>
<td>0.0157</td>
<td>1.0035</td>
</tr>
<tr>
<td>6</td>
<td>-0.0615</td>
<td>0.6495</td>
</tr>
</tbody>
</table>

Dla maszyn, które będą eksploatowane do 2010 roku, graniczne wartości wskaźników odpowiednio równają się:

$$P_1 \leq 1.356 \times 10^{-3} \lambda_{wp}; \quad P_2 \leq 1.845 \times 10^{-4} \lambda_{wp};$$

$$P_3 \leq 3.25 \times 10^{-3} \lambda_{wp}; \quad P_4 \leq 5.311 \times 10^{-2} \lambda_{wp};$$

$$P_5 \leq 4.924 \times 10^{-2} \lambda_{wp}; \quad P_6 \leq 0.71 \times 10^{-2} \lambda_{wp}.$$ \hspace{1cm} (20c)

Przy określaniu $P_1,...,P_6$ jako OWFM należy przedstawić jego faktyczne wartości λ_{wp} z uwzględnieniem współczynnika czasu maszynowego $\lambda_{wp} = \lambda W$. Przyjmując, na przykład, że wymagana wartość ostatecznego wyniku funkcjonowania maszyny nr 53 w zadanym warunkach eksploatacji wynosi 5263,7 jednostek, porównajmy faktyczne i granicznie dopuszczalne wartości wskaźników, charakteryzujących jej jakość (tablica 5). Jak wynika z przytoczonych danych faktyczne wartości wskaźników $P_1,...,P_6$ są mniejsze od granicznie dopuszczalnych. Świadczy to o tym, że maszyna nr 53, według tych parametrów, będzie perspektywiczna do 2010 roku.

Dla określania okresu wycofania maszyny nr 53 z produkcji można posłużyć się równaniem (21). Podstawiając faktyczne wartości poziomu jakości według kompleksowego wskaźnika $K=0.62$ zamiast K_{wp} i rozwiązując go względem t, otrzymamy:

$$t = \frac{\ln K + 1.81}{0.0225} + 1950 = 2009.$$ \hspace{1cm} (20d)

Tablica 5. Wartości wskaźników charakteryzujących jakość maszyny

<table>
<thead>
<tr>
<th>Numer wskaźnika ($j=1,...,6$)</th>
<th>Wartość wskaźnika</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.567</td>
</tr>
<tr>
<td>2</td>
<td>0.955</td>
</tr>
<tr>
<td>3</td>
<td>16.700</td>
</tr>
<tr>
<td>4</td>
<td>284.000</td>
</tr>
<tr>
<td>5</td>
<td>250.000</td>
</tr>
<tr>
<td>6</td>
<td>3240.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wartość wskaźnika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

W ten sposób eksploatacja maszyny nr 53, przy wskazanych warunkach, będzie ekfektywna do 2009 roku. Przy normatywnym okresie eksploatacji $t_{\text{wp}} = 3$ lata okres wycofania maszyny z produkcji wyniesie:

$$t_{\text{wp}} = t - 3 = 2009 - 3 = 2006.$$ \hspace{1cm} (20e)

Wykorzystując przytoczone dane można wyznaczyć:

- okres początku modernizacji maszyny:

$$t_{\text{w}} = t - t_{\text{mod.}}.$$ \hspace{1cm} (25)

gdzie $t_{\text{mod.}}$ – średni czas trwania modernizacji maszyny o danym funkcjonalnym przeznaczeniu;

- okres, do którego danej maszynie można przyporządkować wyższą kategorię jakości:

$$t_{\text{ext}} = t - 2t_{\text{w}}.$$ \hspace{1cm} (26)

- okres, do którego danej maszynie można przyporządkować pierwszą kategorię jakości:

$$t_{\text{max}} = t - t_{\text{ext}}.$$ \hspace{1cm} (26a)

Przedstawiona metoda oceny i prognozowania jakości maszyn, w tym również górniczych, pozwala znaleźć bardziej efektywne sposoby rozwiązania zadań, powstających przy projektowaniu, wykonaniu i eksploatacji maszyn, dzięki wyjawieniu limitujących elementów w maszynie.

J.M. Radkiewicz i J.J. Komarow są pracownikami MAI 12 58 79 Moskwa, Wolokolomska Sz. 4, tel. (0-95) 15 84 276, a W.A. Timiriaew i M.S. Ostrowski są pracownikami STANKIN 10 14 472 Moskwa K-55, Woczkowskij 3a, Rosja.